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1A PRECISE CALIBRATION TECHNIQUE FOR MEASURING

HIGH GAS TEMPERATURES

Suleyman A. Gokoglu and Donald F. Schultz
NASA Glenn Research Center

Cleveland, Ohio 44135

ABSTRACT

A technique was developed for direct measurement of gas temperatures in the range of 2050K -

2700K with improved accuracy and reproducibility. The technique utilized the low-emittance of

certain fibrous materials, and the uncertainty of the technique was limited by the uncertainty in

the melting points of the materials, i.e., +I 5K. The materials were pure, thin, metal-oxide fibers

whose diameters varied from 60_tm to 400/.tm in the experiments. The sharp increase in the

emittance of the fibers upon melting was utilized as indication of reaching a known gas

temperature. The accuracy of the technique was confirmed by both calculated low emittance

values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by

the fiber-diameter independence of the results. This melting-point temperature was approached

by increments not larger than 4K, which was accomplished by controlled increases of reactant

flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of

the technique,, the gas-temperature measurements were used (a) for assessing the uncertainty in

inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR

camera to measure gas temperatures. The technique offers an excellent calibration reference for

other gas-temperature measurement methods to improve their accuracy and reliably extending

their temperature range of applicability.

INTRODUCTION

Accurate measurement of gas temperatures typically above 1500K (referred to as "high"

temperatures hereafter) is challenging. Thermocouple measurements at such high temperatures

are not only perturbing, but also require corrections to account for the difference between the

actual gas temperature and the measured thermocouple material temperature. These differences

are typically larger than 100K (around 300K for 2000K [1]) due mainly to radiative heat losses of

the thermocouple. Furthermore, the uncertainties involved in determining the optical and

thermo-physical properties of the gas and the thermocouple material; and in the heat transfer

calculations reduce the reliability of these corrections. Moreover, the physical and chemical

stability of thermocouples to withstand the thermal loads and reactive environments prevailing at

high temperatures naturally limit their life and maximum temperature of use. Aspirated

thermocouples, though typically more durable and shielded for reducing radiative heat loss, make

gas-temperature measurements even more intrusive because they require a lower pressure sink to

enable gas aspiration over the thermocouple junction. Hence, the utility of thermocouples for

inferring high gas temperatures to a level of accuracy better than +50K is quite limited.
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The useof optical techniquesfor measuringh_ghgas temperatureshasdifferentdrawbacksfor
accuracy. Methods basedon emissionpyrometryby utilizing thin fibers, though minimally
perturbingdue to their small size, still requirewell-characterizedemissivity informationand
eliminationof spectralinterference.Implicit opticalsystemsbasedongasdensityandrefractive
index measurementsrequireknowngascompositions,which aredependenton temperatureand
chemicalreactionsandharderto determineat highertemperatures.Otheroptical techniquesrely
on accuratespectralinformation for the emissivity/absorptivityof the gasmixtureconstituents
andtheoreticaltemperature-dependentpopulationbalancecalculationsto determinetemperature.
They alsogenerallyrequirecalibrations,which involve many times the useof thermocouples,
and hence,the resultingmeasurementssuffer from the sameaccuracyand peak temperature
limitations mentionedabove. For recent combustionresearch,even a sophisticatedmethod
involving the useof coherentanti-StokesRamanscattering(CARS) resultedin a temperature
accuracyof nobetterthan2.5%onaflat flameburner,i.e.,largerthan+50K for 2000K [2].

This work exploits the low emittances of optically thin materials (of the order of 0.01 until they

melt) for a direct determination of gas temperatures at their melting points more accurately than

other previously known techniques. The current technique has been demonstrated under

atmospheric pressure by using four different oxide materials: alumina (A1203, melting point:

2320K), ytrria (Y203, melting point: 2690K), yttria alumina garnet (YAG, melting point:

2200K), and alumina/YAG eutectic (melting point: 2095K) [3 - 5]. For the gas temperature

range covered in this study (- 2050K - 2700K), our measurement uncertainty was only limited

by the uncertainties reported in the literature for the melting points of these materials; i.e.,

typically +I5K [3-5]. These four materials have been grown as pure (at least 99.999%),

transparent, thin fibers with a crystalline structure by using the laser-heated floating zone method

[6]. The measured melting-point uncertainties during their growth were consistent with the

literature values, except for yttria where the uncertainty was as large as +30K relative to the

+IlK reported in [5]. Because the fibers are high-temperature oxide materials, they are highly
immune to chemical reactions and sublimation in conventional combustion environments and

preserve their structural integrity. The diameter of the fibers used in this study varied between

60_m to 160_m, but the results were found to be independent of fiber diameter, confirming that

fiber emittances were sufficiently small to ascertain the accuracy of our technique. The fibers

were stiff and strong enough to be placed horizontally in cross-stream of up-flowing hot gases

(Reynolds number < 50) and were able to withstand any shearing and gravitational forces until

their melting point. However, as soon as they changed phase and melted, their optical properties

changed drastically such that they became highly emissive and much brighter [7-8]. The visual

observation of their melting, and the associated abrupt change in their emittance, was used as the

indicator of the gas temperature in the immediate vicinity of the fiber.

The technique currently lends itself for gas-temperature measurement only under controlled and

relatively benign environments and at a relatively few discrete conditions as described below.

Hence, it can most effectively be utilized to calibrate other gas-temperature measurement

techniques, much improving their accuracy especially in higher temperatures where their

reliability becomes increasingly questionable. We applied it in this work to assess the accuracy of

thermocouple measurements and to calibrate an IR camera with a spectral range from 0.41am to

2.2_tm. There is no inherent difficulty for applying the technique to systems at pressures other

than the atmospheric. The extension of the technique to a larger temperature range can easily be

accomplished by identifying the appropriate fiber materials.
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EXPERIMENTAL

A schematic of the top-view of the experimental setup is shown in Fig. 1. A circular, vertically

oriented, cooled, flat-flame burner with a flow-area radius of 1.8cm was used for this study. The

burner allowed stable burning of premixed hydrogen/air or hydrogen/oxygen gas mixtures under

atmospheric pressure up to temperatures beyond the melting point of yttria fibers; i.e., > 2690K.

Technical-grade hydrogen and air, or hydrogen and oxygen gas flow rates were individually

adjusted to, and controlled at, desired levels prior to mixing and entering the burner. A spark

igniter was placed close to the peripheral edge of the burner-top and outside the view of the IR

and CCD cameras. Thin and short (- lmm OD x - 10cm long) stainless-steel tubes were used to

support the fibers (60_m to 160_tm in diameter). Short portions of the fibers were inserted into

the tubes from the tube ends and bonded with a high-temperature RTV adhesive. About 2cm-

long fibers, protruding from the tube end, were inserted horizontally along the fiber axis into the

flame. This length was sufficient for the bonded tip of the metallic tubes to be out of the hot

zone and camera views. A remotely controlled rotational stage had four stations to hold either

fiber-bearing tubes or thermocouples, as needed. Each station was capable of axial and lateral

motion, allowing insertion and withdrawal of the fiber or the thermocouple to and from

predetermined positions in the flame.

A. Flame Temperature Profiles

The characterization of the burner, using both thermocouple and IR band-ratio measurements,

indicated that there is about a 2cm-long zone, between approximately 1.5cm to 3.5cm above the

burner, where the axial temperature profile in the flow direction remains constant to within

+40K. Hence, in this study, we fixed the height of the horizontal fiber axis above the burner at

3.0cm, thereby avoiding axial temperature gradients across the fiber diameter.

Typical radial temperature profiles at this height are shown in Fig.2 for two different oxygen

flow rates of 100slm and 120slm at a fixed hydrogen flow rate of 30slm, resulting in different

flame temperatures. The measurements were made by a high-temperature-resistant Ir/Ir-40%Rh

thermocouple with a 0.5mm wire diameter. The thermocouple assembly was mounted on one of

the stations of the rotational stage and programmed to traverse the flame radially where the bead

started from the outside edge of the burner and returned back to the starting position. The

thermocouple stopped at 6 locations, which were 0.4cm apart from each other, for 40 seconds

each to reach local thermal equilibrium before taking, typically, 10 readings over one second.

The solid line connects the measurement points when the thermocouple is being inserted into the

flame and the dashed line when it is being withdrawn from out of the flame. The standard
deviation for each measurement at each location did not exceed 5K for the various number of

readings and frequencies tried; hence, the error bars are too small to show on the graph. The

measured profiles demonstrate that the temperatures are steady and reproducible, which is

indicative of a stable flame. They also show that there is a uniform temperature region at the

center, which is at least 0.5cm in radius, and that the temperature drops sharply towards the edge
of the burner.
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B. Fiber-Melting Procedure

We inserted the tip of each fiber to slightly beyond the "knee" of the curve into the uniform

temperature region; hence, most of the fiber was in the cooler region of the flame and melting

occurred only at the tip of the fiber, typically not longer than 2mm. The fiber-tip melting was

observed by CCD and IR cameras, which were isolated from the burner inside nitrogen-purged

boxes. The CCD camera looked along the fiber axis with a magnifying lens and was focused on

the front view of the pointing fiber tip. The IR camera looked across the fiber diameter and was

focused on at least a lcm-long side view of the fiber. The focusing was done for every fiber on

the rotation stage before the flame was ignited. Each fiber was slowly inserted into its proper

position based on the predetermined flame-temperature profile. The precise location of each

station after focus was recorded to within 0.2x0.2mm2; i.e., the pixel resolution of the CCD

camera. This procedure was necessary because of slightly different tube/fiber lengths and

elevations during the installation. Then, the aperture of the CCD camera was set manually to the

lowest level in order to protect the camera from bright images at flame conditions. Upon closing

the aperture, the focused image of the transparent fiber tip disappeared in the camera. The gain

and aperture settings of the IR camera, however, were always fixed, so the camera protection was

provided by a remotely operated filter wheel and a shutter. The IR camera was not only used for

the observation of fibers but was also calibrated as an application of this technique.

Before the flame was ignited, the fiber was completely withdrawn away from the burner area.

Once a stable flame was established and its temperature was brought up close to the melting

point of the specific fiber, based on our estimates from earlier thermocouple measurements and

adiabatic flame temperature calculations, the fiber was reinserted slowly into its previously

determined precise point of focus. This procedure protected the fiber from ignition transients and

minimized its time at temperature.

We assured the stable operation of the burner by fixing the oxidant (air or oxygen) flow rate for

this study at 150slm. This was consistent with the hydrogen/(diluted)-oxygen flame speeds

reported in the literature [9-10] for the range of equivalence ratios of interest.

The precision of our measurements depended on the precision of control of the flow rates of the

reactant gases while approaching the melting points of the fibers. The flow meters for both fuel

and oxidant gases, which had full ranges of up to 200slm, were controllable to within +0. l slm.

Adiabatic flame temperature calculations using the NASA CET computer code [11] showed that

the maximum flame-temperature change per 0.2slm change in the hydrogen flow rate, for a fixed

oxidant flow rate of 150slm, was not larger than 4K. In fact, the flame temperature is less

sensitive to changes in pure oxygen flow rate at a fixed hydrogen flow rate due to the combustion

reaction stoichiometry, an.d even less sensitive to changes in air flow rate due to the additional

presence of nitrogen. However, our procedure of fixing the oxidant flow rate was sufficiently

precise, providing increments of no more than a maximum of 4K as we approached the melting

point of the fiber when the flow rate of hydrogen was increased by 0. I slm each time.
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During operation, the fiber tip started to get brighter and its image reappeared on both cameras

when the flame temperature got close to the fiber's melting .point. The rest of the fiber was still

invisible on cameras. The CCD camera image was also recorded on video for post-experiment

visual analysis of fiber behavior prior to melting. The melting of the fiber tip and the formation

of a tiny droplet (-lmm in diameter), which was blown away by the flame, took less than one

second but was easily observable on both cameras.

C. Data Collection

There is typically a l mm-recession of the fiber length after the molten droplet is blown away.

The flow rates of the reactant gases at the point of fiber-tip melting are recorded as the

characteristic data pertaining to a specific fiber material. IR readings were taken within the ten

seconds immediately following fiber-tip melting while the gas flow rates were carefully kept at

the same constant level. For quick repetitions of the experiment, the hydrogen flow rate was

reduced slightly and the fiber tip was reinserted into the same precise point of focus. Then, the

hydrogen flow rate was slowly crept up again in 0. I slm increments until the fiber tip melting was

again observed. After the corresponding IR measurements were taken, the same sequence was

repeated for multiple measurements for the same fiber. We then proceeded to continue the

experiment with fibers at other stations on the rotation stage. Finally, thermocouple

measurements were made at the corresponding focal positions and gas flow rates for

comparisons. The identity of the fibers at each station as well as the order of the experiments,

from the lowest melting-point fiber to the highest, were deliberately randomized to reassure

repeatability of data.

After the molten tip of the fiber was convected away, a small drop-of re-solidified material

remained on the recessed fiber tip, as shown on Fig. 3, and provided physical evidence of actual

melting. As can be seen from the photographs, the diameters of re-solidified drops were typically
twice the diameter of the fiber, and seemed to preserve the transparent structure of the original

fiber. Although the maximum diameter of the original fibers used in this study was 1601.tm, the

actual maximum diameter was sometimes as large as 4001.tm because we reinserted the re-

solidified molten tips for determining experiment repeatability and fiber-diameter dependence.

The IR camera to be calibrated was sensitive from 0.4_m up to 2.2_tm. The band-ratio technique

described and the experimental emittance data reported in [ 12] were used to study the ratio of the

hot H20 emission band radiance at two strong peaks centered at wavelengths of 1.45_m and

1.94!am as a function of temperature. The choice of these wavelengths was determined by the

spectral responsivity of the IR camera. This also ruled out the possibility of interference from

CO2 emission bands although the experiments in this study were limited to hydrogen flames.

The overall uncertainty of our band ratio measurements, inclusive of all data for each fiber case,

was determined to be + 15%.

Either air or oxygen at a fixed volumetric flow rate was used for the same hydrogen fuel in order

to check the consistency of our experimental measurements. Oxygen bottles were technical

grade and could be considered pure for all practical purposes; however, the oxygen content of air

bottles in the experiments varied between 20% to 21% by volume.
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DISCUSSION OF RESULTS

For each oxidant gas, air or pure oxygen, at least six experiments were conducted for each fiber,

except for yttria for which the material supply was limited to allow only two experiments.

Alumina fibers were more readily available than the others, so data for alumina fibers represent

more than fifteen experiments. The two cases for yttria fibers had to be done with pure oxygen

because the maximum temperature attainable for hydrogen/air flames is not high enough to melt

yttria. The experiments were randomized with respect to the oxidant gases, order of fiber

material, fiber diameters or batch of fibers supplied. During the collection of data at an outdoors

facility the gas-bottle temperature varied by no more than 10K. The standard deviations reported

in the results include these random and day-to-day experimental variations.

The hydrogen flow rate at which the melting of each fiber material was observed for a fixed air

or oxygen flow rate is depicted in Fig. 4. Also shown in the Figure are the results of theoretical

calculations for adiabatic flame temperature as a function of hydrogen flow rate [11]. The

maximum standard deviation in hydrogen flow rate for different fiber cases was determined to be

+0.5slm. As mentioned earlier, the maximum uncertainty in the air or oxygen flow rate, which

were kept constant at 150slm, was _-Z-0.1slm. Theoretical adiabatic flame-temperature calculations

for such variations in hydrogen and air, or oxygen, flow rates show that the maximum uncertainty

in the corresponding flame temperatures for each fiber case is less than +15K. Note that the

melting points of fibers were determined with a precision of better than 4K in each individual

experiment, as discussed above. Therefore, the overall uncertainty of our measurements is

governed by the +15K uncertainty in the reported melting points of these materials. Hence, the

data for alumina, YAG and alumina/YAG eutectic fibers are reported in Fig. 4 as small boxes
where the width of the boxes reflects the overall +0.5slm standard deviation in measured

hydrogen flow rates and height of the boxes reflects the +I5K uncertainty in the materials'

melting points. For ytrria, only the averaged value for the two hydrogen flow-rate measurements

is shown in Fig. 4. Also, ytrria's melting point uncertainty is plotted as +30K (as opposed to

+1 IK reported in [5]) based on uncertainties determined during the growth process of this fiber

using the laser-heated floating zone technique [6].

For each fiber case where both pure oxygen and air were used, the experimentally determined

hydrogen flow rates at which the fiber melted for pure oxygen were consistently larger than their

counterparts for air, as is shown in Fig. 4. Indeed, theoretical calculations show that this

behavior is to be expected for hydrogen-lean flames; that is, pure oxygen requires more hydrogen

than is necessary for air to reach the same adiabatic flame temperature when hydrogen is the

deficient reactant. There are two major reasons for this difference. The first one is that the molar

heat capacity of air is smaller than that of pure oxygen because of the heat-capacity difference

between nitrogen and oxygen gases [13]. The second reason is that, when the volumetric (molar)

flow rate of pure oxygen and air are fixed at the same level, the mass flow rate of air is smaller,

due to its lighter molecular weight, than that of pure oxygen. The effect of nitrogen chemistry is

found to be negligible, as expected. Naturally, the oxygen content of air determines when

hydrogen is no longer the deficient reactant. The two curves for air with 20% and 21% oxygen

by volume covers the range of different air bottles used in our experiments.
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Another experimental observation was that the melting points of fibers were reached when the

theoretically calculated adiabatic flame temperatures were typically 100K to 125K higher than

the respective melting points. There are two plausible explanations for this difference. The first

explanation is that the flame is not adiabatic and that heat loss from the flame, especially via

conduction back to the burner, may be substantial, such that the actual flame temperature may be

as low as the melting point of fibers. The second explanation is that the fiber temperature may

also be substantially lower than the flame temperature due to radiative cooling.

The presence of heat loss from the flame to the burner was demonstrated by the result that if the

total gas flow rate was reduced, the coolant-water flow rate through the burner had to be

increased to keep the burner-surface temperature-rise within safe limits. In fact, the minimum

total gas flow rate was determined to be 125slm for a stable operation and for avoiding flashback.

Increasing the total gas flow rate for a given flame temperature should reduce this heat loss by

reducing the gas-temperature gradient above the burner surface. Indeed, there seems to be a

trend also in our experiments which shows that the difference between the adiabatic flame

temperature and the fiber melting point become smaller as the total flow rate increases.

However, in our experiments, the total gas flow rate was increased by increasing the hydrogen

flow rate which also increased the flame temperature. Hence, the conductive heat loss to the

burner was determined by a competition between the reduced heat transfer coefficient and the

enhanced flame temperature, which seemed to favor the reduction of the heat transfer rate by

increased flow rate. Indeed, it is remarkable that the hydrogen flow rate at which ytrria's melting

was observed (~2700K) gives an adiabatic flame temperature which is so close to ytrria's melting

point. This observation also provides strong evidence that radiative heat loss from the fiber is
small.

Despite the remarkable reproducibility and improvements in the uncertainty levels of this study at

such high temperatures, a key question is still the accuracy of our technique in determining the

actual gas temperatures. Addressing this question requires knowledge of how much cooler the

fiber can be than its surrounding gas. Hence, we took two separate approaches to better quantify

the effect of radiative cooling experienced by the fibers. The first one was a theoretical approach

based on the available optical data for alumina. The fiber emittance, e, is proportional to the fiber

diameter, d, by the relationship e - 1 - exp(-kd), where k is the absorption coefficient of the

material. This relationship shows that as the thickness of the material gets smaller its emittance

becomes smaller, or equivalently, its transmittance gets larger. When the material becomes

optically thick enough to be opaque, i.e. kd >> 1, then the material is no longer transparent, and

the emittance is then known as the emissivity. The absorption coefficient of alumina is reported

in the literature as a function of wavelength at various temperatures [8]. We utilized this

absorption coefficient information at 2293K, combined with the spectral radiance function, to

calculate the total emittance of a 125!am-diameter alumina fiber close to its melting point [14].

The calculated total emittance value was 0.OO8. Naturally, this value gets even smaller for

thinner alumina fibers. Even if the actual emittance is larger than our calculated value by a factor

of 5, we estimate a radiative correction, using standard heat transfer correlations [15], of less than

15K. Since the other fibers are also oxide materials with similar visible appearance and behavior

as that of alumina, and ceramics are relatively poor conductors of heat, we believe that this

correction is realistic for the conditions of our experiment.

NASA/TM-- 1999-209280 7



Our secondapproachto characterizethe significanceof radiativecooling of the fibers wasan
experimentalone. We variedthediametersof ouroriginal fibers from 60_tmto 160_tm.During
the fiber-tip melting, re-solidification,and re-meltingcyclesof our experiments,we observed
that the fiber's tip diameterbecameevenlarger than400_m. The standarddeviation of our
experimentalresultsfor all fiber sizes,however,waswithin the uncertaintyin the fiber melting
temperatures.This wasdespitethe fact thatemittanceis exponentiallydependenton the sizeof
thesample,asgiven by therelationshipabove,and the fiber tip sizecovereda rangeof almost
one orderof magnitude.For example,for the more-readily-availablealuminafiber, we usedat
leastfive fibers from eachof thethreeoriginal-diameterclassesof 60_tm-80ktm,90_tm-120_tm,
and 130_m-160_tm.Such independencealsoconfirms that theeffectsof temperaturegradients
across the fiber diameter and the amount of latent heat required to melt the fiber tip are
negligible. We interpretthis finding to meanthat theemittanceof thefibers wassosmall in our
experimentsthat any variation of emittancewith respect to the size of the fiber tip was
encompassedby our experimentalreproducibility with an uncertaintyof -+15K. Hence, we
c6ncludethatthedeterminationof actualgastemperaturesrequiresa correctionof not morethan
15Kto beaddedto thedirectly measuredhightemperaturesobtainedusingour technique.

We appliedour techniquefirst to assesstheaccuracyof our thermocouplemeasurements.The
resultsaredepictedin Fig. 5. We usedonly threelower-melting-pointmaterialsfor this purpose
sincethetemperaturesrequiredfor yttriaaretoohighfor our thermocoupleto survive. Thecurve
labeled"material's melting point" representsthe accuratereferencetemperaturesto which our
thermocouplemeasurementsneedto becompared.Thecurvelabeled"T/C corrected"represents
the gas temperaturesinferred from thermocouplemeasurementsafter applyingcorrectionsfor
both radiative and conductivecooling of the bead. The thermal and radiative propertiesof
thermocouplematerials,rhodiumandiridium, areobtainedfrom [16], andanemissivityvalueof
0.35wasjudgedto bea reasonableestimatefor theconditionsof ourexperiment.The measured
gas-temperaturegradientin theradialdirectionis usedwhenapplyingtheconductioncorrection.
Figure5 confirmstwo majorpoints. Thefirst point is thatsubstantialcorrectionsarerequiredto
thermocouplemeasurementswhich are typically larger than 150K at suchhigh temperatures.
Secondly, thesecorrectionsare accompaniedby large uncertaintiesdue to uncertaintiesin
materialpropertiesusedandheattransfercorrelationsapplied,suchthat onecanstill beoff from
the actual gas temperatureby more than 100K even after the corrections. The consistent
underpredictionof thermocouplemeasurementsfor all three materialssuggestsa systematic
error, which can be due to, say, the emissivity value used. Yet, without our reference
measurements,such suspicionswould only be a part of the uncertaintiesassociatedwith
corrections.

We thenappliedour techniqueto calibratetheIR cameradiscussedabove. Thecalibrationcurve
obtainedis depictedin Fig. 6. The error bars indicate the uncertaintyin our techniquein
determiningthe gastemperatureon the horizontalaxis, andthe overall uncertaintyof_+15%in
theband-ratiomeasurementson the verticalaxis. Unfortunately,at the timeof ourexperiments,
we did not haveproperneutraldensityfilters to beableto takeH20 emissiondatato determine
the bandratio at thehigh flame temperaturesrelevantto yttria. Therefore,we extrapolatedthe
calibrationcurveby adashedline only for thepurposeof demonstratingapotentialapplicationof

NASA/TM-- ! 999-209280 8



our technique. Emission data taken by using either pure oxygen or air for generating H20 shows

the consistency of also the band ratio measurements, just as was the case for the fiber melting

point measurements. Given the uncertainties in the measured band ratios and the slope of the

calibration curve, the accuracy of the IR camera we calibrated was about +65K.

CONCLUDING REMARKS

A technique is described to measure gas temperatures above 2000K with an accuracy and

reproducibility estimated to be within +15K. Pure, transparent, thin metal-oxide materials were

utilized which had abrupt changes in their emittance upon melting. These materials were in fiber

forms and had known melting points up to 2690K. Hydrogen-air and/or hydrogen-oxygen flames

were used to obtain the high temperatures. The gas temperatures could be adjusted and

controlled within 4K. The experimental melting-point measurements were independent of fiber

diameters, which varied from 60_tm to 400_tm in our experiments. The calculated emittance

values, based on published absorption coefficient data, were also of order 0.01 at temperatures a

few degrees below the melting point. These findings indicated that radiative cooling of fibers

was negligible prior to melting, allowing direct measurement of gas temperature. The accuracy

of the method was limited by how well the melting points of these materials were known. The

technique was applied first to assess the accuracy of gas-temperature measurements inferred from

thermocouples, and confirmed that such measurements are typically accompanied by

uncertainties larger than 100K. The technique was also used to calibrate an IR camera to

measure gas temperatures using the band-ratio method for hot water emission at 1.451am and

1.94_m. It was demonstrated that the technique offers an excellent calibration reference for other

gas-temperature measurement methods to improve their accuracy at higher temperatures.
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